
GrassHopper robotic simulation to
RobotStudio

Laboratory :
IndexLab

Author :
Thibault Courtois

2024-2025 Guide

Guide

Table
Introduction 3

1 Why using both GrassHopper and RobotStudio ? 4
1.1 GrassHopper robot plugins . 4
1.2 RobotStudio . 4

2 RobotStudio setup 5
2.1 Generalities . 5
2.2 Installation and setup . 6

2.2.1 Download and Licensing . 6
2.2.2 Installing the suitable RobotWare . 7

3 Robot Studio Environment 9
3.1 Main panels general descriptions . 9
3.2 Modeling Window . 10
3.3 Controller and simulation window . 14
3.4 RAPID structure . 17

4 Manual Mode with RobotStudio 19
4.1 Launching manual mode . 19
4.2 FlexPendant basics . 20
4.3 Jogging and Calibration . 26

5 Pick and Place tutorial 32
5.1 GrassHopper start . 32
5.2 Robotic cell creation . 34
5.3 Tool integration . 36

5.3.1 Create tool . 36
5.3.2 Create mechanism tool . 38

5.4 Work object planes . 42
5.5 Rapid code formal edition . 43
5.6 Signals creation . 49
5.7 Simulation . 50
5.8 Help for debug . 53

Conclusion 54

Complementary resources 55
5.9 ABB official manual . 55
5.10 GitHub link . 55

Page

Guide

Introduction
The aim of this guide is to highlight the advantages of using the GrassHopper plugins for robotic

alongside ABB’s RobotStudio software to programABB robots. It also provides the necessary knowl-
edge to work with RobotStudio, enabling users to transfer their simulations from GrassHopper to
RobotStudio. This guide is intended for Polimi students who need to use an ABB robotic arm and
want to quickly understand the basics of RobotStudio, how to create a digital twin of the real robotic
arm they intend to use, the structure of RAPID programming, and how to jog the real robot. This
guide is not mean to help you create a simulation by using exclusively RobotStudio. The creation of
tool path and target on robot studio for example will not be explained in this text.

Thus, I have decided to use a tiny part of this guide to explain the pros and cons of both the
GrassHopper plugins for robotic and RobotStudio to demonstrate the benefits of combining these
two software. Then, I will cover the basics of RobotStudio simulation, including downloading and
setting up the software and explaining the environment. An important section of this text is dedi-
cated to the manual mode in RobotStudio, which operates identically to the manual mode on the real
system. Finally, the last part of this guide is a tutorial that details every step necessary to implement
a pick-and-place simulation created in GrassHopper into RobotStudio.

This guide was written after my first month of internship at the IndexLab laboratory. Before that,
I had never used Rhino, Grasshopper, or RobotStudio. This guide is based on the limited knowledge
I gained from using both software and the methodology I employed. Consequently, it is far from ex-
haustive andmay contain inaccuracies or unoptimized sections. Therefore, I encourage every reader
to consult the official ABB guides referenced in the complementary resources section of this guide
to enhance their knowledge, double-check whenever they have doubts, and further their mastery of
RobotStudio.

Page 3

Guide

1 Why using both GrassHopper and RobotStudio ?

1.1 GrassHopper robot plugins
I have used two plugins in GrassHopper to simulate an ABB IRB 4600-45-205 robotic arm (IndexLab
ABB robot). The first one is the Robot plugin by Vicose, and the second one is the Robot Compo-
nents plugin, which works similarly to the Robot plugin but includes additional tools specific to ABB
robots.

The main advantage of using GrassHopper is the ability to quickly create robot targets. By cre-
ating an algorithm with GrassHopper blocks, you can simultaneously generate hundreds of targets
based on a curve, surface, or brep you create in Rhino or GrassHopper. This is a significant advan-
tage compared to RobotStudio which is less intuitive and fast. Moreover, you can directly integrate
Rhino 3D models to create your tools, work objects, and robotic cells for robotic simulation. Conse-
quently, I think that using GrassHopper as a first simulation approach is better compared to a strict
utilization of RobotStudio.

However, many tutorials advise using RobotStudio after your GrassHopper simulation to utilize
the exact numeric twin of your robot and the ABB inverse kinematic algorithm solver. This solver
simulates more singularities and is more accurate because it is the same one used on the real robot.
In addition, GrassHopper will generate a RAPID program (the programming language used by ABB
robots), which will include one line of code for each target (thus will create RAPID programs that
have hundreds of lines). This approach is not optimized, readable, or reusable for other students
or people who have not read your GrassHopper algorithm but will, ultimately, use the FlexPendant
(the remote controller for your ABB robotic arm) to run the RAPID program. So it is for me essential
to learn the basics of RAPID programming to restructure your code and provide a comprehensive
version inside the real robot.

Finally, it is difficult to simulate tool animations (such as a gripper closing) and work object
displacement (such as visualizing the displacement of a block picked and placed) in GrassHopper.
Managing work object data and creating targets relative to different orientation frames (we will see
this in the tutorial) is also challenging in GrassHopper, especially with the Robot plugins (although
it can be done more easily with the Robot Components plugins). These tasks are often necessary in
RobotStudio.

1.2 RobotStudio
RobotStudio is far slower than GrassHopper to program robot target and path. Indeed, I will not
describe this process in this guide, but you will need to create frames manually for every target you
want (unless you wants to use advanced features that are similar to GrassHopper but less intuitive).
Tool integration is also slower and more detailed. The software globally needs more rigor.

In addition to the advantages developped in the GrassHopper part, I would say that working
with RobotStudio particularly the manual mode will fasten your mastery of the real robot. So it
won’t be a lost of time at the end.

Page 4

Guide

2 RobotStudio setup

2.1 Generalities
BAs a start, let’s have a basic explanation of the software RobotStudio and the RobotWare firmware.
These two definitions are given in the Operating manual : Getting started, ICR5 and RobotStudio you
can find here here.

RobotStudio

"RobotStudio is an engineering tool for configuration and programming of ABB robots, both real
robots on the shop floor and virtual robots in a PC. To achieve true offline programming, RobotStudio
utilizes ABB VirtualRobot™ Technology.

RobotStudio has adopted the Microsoft Office Fluent User Interface. The Office Fluent UI is also used
in Microsoft Office. As in Office, the features of RobotStudio are designed in a workflow-oriented way.

With add-ins, RobotStudio can be extended and customized to suit your specific needs. Add-ins are
developed using the RobotStudio SDK. With the SDK, it is also possible to develop custom SmartCom-
ponents which exceed the functionality provided by RobotStudio’s base components."

Concerning RobotStudio SDK and SmartComponents, we won’t use them in this guide, but ev-
erything is detailed in the ABB official manuals if you want to go further.

RobotWare

"RobotWare is a generic term for all software to be installed in the robot system designed to operate
the robot."

The firmware installed on the computer inside the ICR5 armory of the real robot you are using
is a version of RobotWare. RobotWare firmware as for 3D printer firmware for example is updated
frequently but is physically installed in your ICR5 controller with an installation disk.

Thus, even if the last version of the firmware can be installed on RobotStudio, it is not possible
for your real ICR5 controller. Consequently, we will need to set up the correct RobotWare version
in RobotStudio (usually a downgrade of the last version) to perfectly twin your real system.

Page 5

Guide

2.2 Installation and setup
2.2.1 Download and Licensing

Page 6

To download RobotStudio, go to the official website and navigate
to this page [1]. If it is the first time you are downloading the
software, you can have a 1-month free license by filling the
following fields : [2].

At the end of the download, unzip RobotStudio folder and
launch setup.exe to begin its installation.
When you open RobotStudio for the first time, twomessages will
pop up : the first one concerns licensing, and the second one
makes you download and install a RobotWare distribution.

Let’s first discuss about licensing : if you have closed
the message and want to register a license, go to File, option and
then select General : licensing in the option window. If it is the
first time you downloaded the software, check if you have the
1-month trial license by clicking on View Licenses.

If you want to use the license of IndexLab which is a
network license (a multi-user license linked to a server that
allows a certain number of user on the same TCP/IP network)
you will have to follow the following steps :

• Quit RobotStudio

• You need to edit a precise file :
Slps.Distributor.Services.dll.config related to licensing
and SLP distributor to enable a multi-user license
(by default, the feature is disabled). It is located in
C:/Program Files (x86)/ABB/SLP.Distributor.Host/Services
and you need to uncomment the following line :
<add key="Slps.Distributor.Service.EnableUsageLogging"
value="true">.

• Then you need to install the SLP Distributor server on
your computer. For this, you need to find the unzipped
folder of RobotStudio and open the .exe file located in /U-
tilities/SLP Distributor.

• Select TCP ports 2468 and 8731 during the installation
of the SLP Distributor.

• You can then go to your local server
http://<server>:2468/web and activate the multi-user
license key [3].

• You can now reopen RobotStudio, go to File, option and
then select General : licensing and click Activate RobotStu-
dio License.

Fig. 1 – Downloading RobotStudio

Fig. 2 – Trial License

Fig. 3 – SLP distributor server

Fig. 4 – Activate RobotStudio License

Guide

2.2.2 Installing the suitable RobotWare

Now we need to install a RobotWare distribution. To make the perfect digital twin of the
robot you want to simulate, you need to find the suitable RobotWare version. Indeed, RobotWare is
frequently updated but your ICR5 controller is not and keep the same software version.

To find it, you need to power up your Robot and use the FlexPendant (remote controller of your
robot). Then you need to find the System Info Menu and select System Properties [7].

If you are using the ABB robot of IndexLab, the RobotWare version is RW6.02_01.00.1029.

Page 7

• Then select the first option below Network License, click
Next [4]

• Write down the IP address of your computer in the text
input field and click finish.

• RobotStudio will then need to restart, and you will nor-
mally have your license registered [5]

• If you have difficulties or need more details, you
can click Help when you selectActivate RobotStudio
License and go to Getting Started : How to activate
RobotStudio [6]

Fig. 5 – License registered

Fig. 6 – Help

Fig. 7 – RobotWare version

Guide

You can then go to the Add-ins window of RobotStudio and install the suitable RobotWare
version [8], [9]. If you already have a RobotWare version installed, you can add another version
by clicking on Add.

You can now create your first RobotStudio project by going to File, New and selecting Project. You
can click the option Include a Robot and Virtual Controller and select the configuration you
want [11].

If you have not chosen this option when creating your project, it is not a problem, just go toHome
menu and select the button Virtual Controller Build Station [10].

Page 8

Fig. 8 – Available RobotWare

Fig. 9 – RobotWare Version

Fig. 10 – Include a Robot and Virtual Controller

Fig. 11 – Include
a Robot and Vir-
tual Controller

Youwill then have your selected robot in the graphic
window, at the position (0,0,0) in the world coordi-
nate system [12] :

Fig. 12 – Graphic window

Guide

3 Robot Studio Environment
In this section, I will describe the key features of RobotStudio by first covering each main menu,

and then detailing some important features I used during my internship, particularly in the model-
ing panel, the controller panel, and the RAPID panel.

3.1 Main panels general descriptions
Apart from the file menu, I have explained in the RobtStudio setup section [5.9], there are 6 main
menus in RobotStudio [13] :

• The home panel [14] is not the most useful from our point of view. Indeed, the main feature
of this panel is to create RobotTargets, JointsTargets and Path which is useless for us because
we already have a GrassHopper simulation and thus a raw RAPID program that already gather
every target we need.
However, the ABB library button as well as the Import library button are essential to
simulate the robot that you want and bring some specific ABB product you can download
via the Add-in menu (tools, conveyor, robotic cells ...) to your simulation. Except the build
station buttons, the path programming and the Graphics (used to create other views and
customize the layout) groups of buttons, the other features of this window come from other
main panels.

• The modeling panel is essential as it will allow us to import our 3D models, integrate our
tools, model directly some basic components inside RobotStudio and move them in our envi-
ronment. Because this panel has a dedicated part in this section, we won’t go further here.

• The simulation panel [16] is used to launch your simulation and to record it (pretty intu-
itively) and thus will be useful at the end of your work to get a professional final result. Its
key feature is to configure events (with the signal you defined inside your controller) and
launch actions based on these events. From this window, we can also configureWorkObject
frames and Tooldata.

Page 9

Fig. 13 – Main menus

Fig. 14 – Home panel

Fig. 15 – Modeling panel

Fig. 16 – Simulation panel

Guide

• The controller panel is a key menu. From there you will be able to select the operating
mode and thus jog the robot (manual mode section). You can also configure your simulated
ICR5 system by creating new signals, load configurations and backup your system. As for the
modelling window, I dedicated a section for this panel.

• The RAPID window enable you to create your own programs and modify them. It is a
development environment and thus have the same features as many other IDE. You can debug
your code with breakpoints, move your program pointer, run in step by step mode ... In this
section, I will explain the RAPID code structure.

• The Add-in gallery [17] is used to install libraries for your simulation. Every ABB Robots
can be found there, as well as 3D models for tools, documentation, robotic cells, RobotStudio
optional features ... If you use some specific equipment you have not model yet, check this
gallery, especially the end of the models’ gallery where you can find some tools, conveyor and
external axis.

3.2 Modeling Window

First, let’s describe the controls to rotate and move inside the central view [18].

• To rotate, hold control + shift + left mouse button

• To move, hold control + left mouse button

• To zoom, you can use the mouse scroll wheel, you can also press shift + rightmouse button
to create a zooming window inside the view.

Page 10

Fig. 17 – Add-ins window

Fig. 18 – Moving commands

Guide

Page 11

For every window, you have a sidebar that shows important information
to the user. In the modelling window, we can access the layout [19]. The
layout, displays every mechanism and components of your simulation (ABB
robot is considered as a mechanism). You can select an item by clicking on
their name, and selecting several of them by holding shift and left-clicking.
Right-clicking on an item shows a lot of different features we are going to
explain here.

You can create pieces with the Create button group [20]. Using RobotStu-
dio is suitable for simple shapes, but you will always prefer to use a proper
CAD software such as Rhino and import your work inside RobotStudio. For
example, using the Create Box option, you can create a parallelepiped
type of shape [20].

When you have created a normal component such as a box, you can then ap-
ply several interesting operations by right-clicking on it in the layout sidebar.
Here are some useful command :

• You can change their local origin (right click, Modify, Set Local
Origin) [21], [27]. Indeed, RobotStudio and mechanics in general are
all about frames, and everything is relative to the reference frame
we are using. When you create an object, its local origin will be the
origin point of the reference frame chosen during its creation (by
default, the world reference). Every object has a local frame relative
to the world frame and is located based on the position of the local
frame within the reference frame coordinate system.

Thus, when creating any object, any translation will be applied
to the local frame of the object, and then the position of the object
will be updated depending on the position of its local frame. This has
some consequences !

For example, if you want to attach your object to the flange of
the robot and then update its position, the local frame of your object
will align with the local frame of the flange. Your object will be
translated, but will remain in the same relative position to its local
frame (and might be flying around 1 meter away from the flange).
When you select an object, its local frame will appear so you can
check if everything is set up correctly.

Fig. 19 – Layout sidebar

Fig. 20 – Create box process

Set Local Origin Pre-visualization Local Origin changed

Fig. 21 – Set Local Origin process

Guide

• Finally, you can attach your object position to another component of your simulation like
the flange of your robot, or your tool. It is a very interesting feature we will need in the final
tutorial. You can choose to update the position (local frame of the object at the same position
as the local position of the other component) or keep the same distance and rotation compared
to their initial attaching position and orientation.

Page 12

• You can also duplicate an object [22] by offsetting it repeatedly about
an axis (or more) or rotating it about another. Keep in mind that
duplicating an object will also duplicate its frame properties,
including its local frame definition, so try to set the local ori-
gin before duplicating a piece. Before confirming the duplication and
any other placement option, you will have a pre-visualization on the
graphic window [23]

• I have used a lot the placed by one point [24] feature you can find
in the placement suboptions. For our basic usage of the modelling
panel, you won’t need much more to accurately place your objects
[26]. As for the duplicate option, you will have a pre-visualization of
the composed movement applied on your object.

Fig. 22 – Duplicating object

Fig. 23 – Duplication pre-visualization

Set by one point Pre-visualization

Fig. 24 – Place by one point process

Fig. 25 – Object placed

Fig. 26 – Place sub-options

Fig. 27 – Local origin change menu

Guide

For these three options and a lot more of them, you will need to precisely select points on
your objects. For this you need to modify the snap mode option [27] where you can choose the
object snap option for example. You can set up a point by left-clicking on an input coordinate field
(your mouse pointer will then change into a cross) and visualizing the appropriate point with
the snap pre-visualization [29].

Here are the other operation you can do on a regular object :

• Cut, copy and past them.

• Save and export their geometry

• Make them visible/invisible, zoom on them with the examine option and set them as UCS
(user coordinate system).

• Change their appearance with the modify button

• Give them a physic (never used), mirror, group, rename, tag and delete them.

The second type of component you can simulate are mechanisms. You can create mechanism
from themechanism panel you will then be able to fully integrate tools, conveyor and more (tool
integration is fully explaned in the tutorial part). When you right-click on amechanism such as a
tool or a robot, you have other specific options such as :

• Replace it or modify it. Replacing a Robot for example will not destroy all your work,
everything will be adapted to the new robot if you didn’t choose the right one in the first place
(but you will need to alter your RAPID program as the quaternion orientation are different
from a robot to another).

• Jog joints or jog in linear mode, modify the current robot configuration and place it
in specific positions, such as home [30]. It is really useful when you have tested a code
that placed a robot in a bad position, and you want to jog it quickly without using the virtual
FlexPendant.

• Align the tool center point, save the TCP position as a Robtarget or the pose as a JointTarget.

Finally, if you need to quickly move an object without precision, there is another feature you can
use : the free-hand panel [31]. You can select the reference frame and move and rotate button.
Then, when you will select an object, gimbals will appear to drag and rotate items. You can also use
the jog joints button, select and drag a joint intuitively.

Page 13

View shotcuts Measurement shortcut Snap option shortcut

Fig. 28 – Graphic window quick menu

Fig. 29 – Snap point visualization

Guide

3.3 Controller and simulation window
This window offer various parameters that can be very complex. I have only use the outer part of
the iceberg, and I am going to introduce you the basic. For any further information, read the official
manual in the complementary resources section [5.9].

First let’s see what are the buttons of this window and what can we do with them [32] :

• The first group of button is used to connect the real ICR5 controller, authenticate and write
directly some modification on it. I have not used these options.

• Then we have the controller tools used to simulate the FlexPendant (remote controller
of the robot) and to restart the system with the restart button when you have done some
modification that requires it. The FlexPendant utilization is completely described in the next
section of this guide. You can also back up your system if you previously have done a safety
save, for example.

• The I/O panel is used to visualize the signals you have defined for your simulation, you can
also change their value. You can also access the I/O engineering for advanced signal input and
output configuration (not used in my case).

• The configuration panel, is the one that I mostly used. From here, you can install another
version of RobotWare with the installation button you can also configure your ICR5.
Indeed, with the configuration button and the I/O system, the window [33] will pop up,
and you will be able to visualize and navigate through every signal installed in your system.
With a right click on the table, you can add a new signal. The instance editor will then pop
up [34] where you can name your signal, define its access level and most importantly
set the type of signal. Often you will use digital output. After the creation of a new
signal, you will need to restart your controller (finish the configuration of every signal and
then restart). I have not used any of the safety options.

Page 14

Fig. 30 – Jog joint

Fig. 31 – Free hand panel

Fig. 32 – Controller panel

Guide

After creating signals and restarting the ICR5, you can now use them with the Simulation win-
dow and the configure button [35] to associate themwith actions in your simulation (attach object
when the signal is active, change a mechanism, move an object). A window like [37]will pop up.
We will see some example of action and signals management in the tutorial section.

Page 15

Fig. 33 – Signals table
Fig. 34 – New signal setup

The last panel I have used is the Virtual controller panel and the Oper-
ating mode button used to switch between the three mode : automatic,
manual and manual 100% (explanation in the manual mode section [4.1]).

Finally for the controller window, you can access the Path&Target side-
bar [36] that will enable you to configure or modify Work Object Frames by
right-clicking on them or on theWork object & Targets title (more expla-
nation about this in the manual mode section [4.1] and the tutorial section
[5.1]).

Fig. 35 – Configure button
Fig. 36 – Path&Target sidebar

Fig. 37 – Simulation event manager

Guide

Another interesting feature with this window is to visualize the trace of the TCP. You can
activate this feature from this button [38]. Initially, the default tool is the flange of your robot.
If you want to change the traced TCP, you will need to declare a tooldata in the path&target
menu (in the tutorial). You can also associate the appearance of the trace with the value of a signal
(for example, torch welding or not) to differentiate pure movement actions and work actions, for
example [39].

Page 16

Fig. 38
– Trace
button

Fig. 39 – TCP trace options

Fig. 40 – TCP trace options

Fig. 41 – TCP trace options

Guide

3.4 RAPID structure
RAPID is a high level programming language (far away from computer (assembler) or machine (G
code) language) to makes it understandable by humans. However, the raw codes that will give you
GrassHopper plugins is not really intuitive for a human.

In RAPID, programs or TASKS are sets of module, where MODULES are themselves sets of
instructions that will describe the robot working. Instructions are used to command the robot to
do specific actions such as moving, setting an output ... They take arguments (what logically needs
the instruction to work properly) for example for a move instruction, you will need a position, an
orientation (gathered in a RobotTarget), and a tool.

Instruction are used to command the robot and sometimes needs arguments that are generated
by functions. Functions are sequences of RAPID code that generates an output of a certain data
type that is not an instruction but can be used by them. For our basic tutorial application, we will
need really few of them. Instructions and functions are completely different instances of your pro-
gram. In fact, functions are one of the three types of what is called a Routine in RAPID.

There are two other types of routines:

• Procedures which are subprograms, like sections in your report, for example. You can create
them and call them anywhere in your code. They represent a sequence of instructions that
have a meaning together. They will be really useful to create sense in our programs.

• Trap routines that are special procedures used when a specific event occurs (for example, a
human is detected in the robotic cell). It is an advanced feature I have not used.

Routines have one common point : they are all sequences of RAPID code, that have a sense to-
gether and uses arguments. Procedures are sequences of instructions and generic code, trap routines
are sequences of instructions and generic code triggered by a flag (generated by a specific event) and
functions are sequences of generic code that is not producing an instruction.

When coding, you will have to declare and play with different variables with different data
types. Like instructions and functions, there are plenty of data types, but they are only 3 kind of
data :

• A variable (like in every other programming language)

• A persistent that can be seen as a global variable in Python.

• A constant that cannot be changed after its declaration.

Finally, there are two types of Modules : normal ones and system modules. Programs that use
different modules needs to include them at the beginning of their code (like python libraries). Only
onemodule of a program can have a main procedure. However, systemmodules don’t need
to be included, that’s why they are commonly used to declare tools and objects that are needed by
a lot of other modules but are not subject by many changes.

Page 17

Guide

In the tutorial part, you will structure your GrassHopper RAPID program to apply all of this.
Your program will have a structure such as [42] with a task, one module with three procedures and
two system modules.

Apart from what I will detail in the tutorial part, I won’t go further with RAPID program. You
are free to read the official manual to cover your needs (you can find them in the complementary
resources section [5.9]).

Page 18

Fig. 42 – Example task structure

Guide

4 Manual Mode with RobotStudio

Page 19

In this part of the guide, we will discuss how the manual mode works
in RobotStudio and on the real ABB Robot. ABB has replicated the ex-
act same FlexPendant (the remote controller for ABB robots) in RobotStudio.

4.1 Launching manual mode
In the first place, you need to find the operating mode button, which can
be found in the Controller menu [43].

There are 3 types of mode :

• Automatic mode that enable you to launch programs on your simu-
lated robot from the RAPID menu and to launch programs from your
production window without having to press the security of the Flex-
Pendant. Be careful, when launching a program on the real IndexLab
robot in automatic mode, speed declaration in RAPID program encap-
sulate several speeds that can be faster than your GrassHopper one.

• Manual mode (the one we are interested in). You will need this time
to press the security each time you want to move the robot by jogging
or programs you coded. You won’t be able to accelerate the speed of
the robot above the limits of your program’s code.

• Manual full speed mode exactly like manual mode, but you will be
able to accelerate the speed of the robot above the limits you set in
your code with the Quick set options, for example.

After enabling the device in manual mode, you will then click the FlexPen-
dant button [44], which is still in the controller page. A virtual FlexPendant
replica will then pop up [45].

Fig. 43 – Operating mode

Fig. 44 – FlexPendant

Fig. 45 – Default view

Guide

4.2 FlexPendant basics
Let’s now pay attention to the first display of the FlexPendant [45].
We can see two separate sides : the screen side where you will be able to navigate through the dif-
ferent menus proposed by ABB and the button side we will discuss later.

On the initial screen side, we can see in the top left corner a button to access the different main
menus [46]. In the top, we have access to various information gathered in a state view [47].
It indicates :

• The operating mode you are using.

• If motors are currently activated or not (depending on whether you are pressing the se-
curity of the FlexPendant or not and in this case if you have pressed the enable button that
simulate the security system).

• The serial number of the robot you are linked to.

• The percentage of speed you are using, 100% being 100% of the actual speed you coded in
your program at the current instruction

• And finally, a shortcut to the event log menu (we will see this feature later).

In the bottom right corner, there is also the quick set button [48]. From this button you will
access different options related to the mechanical unit you are controlling, the speed, the program
execution type, the speed and the current task. The button already displays the name of the robot
you are controlling (ROB_1 is always the main Robot name linked to the ICR5 controller), the type
of movement and if you are using the increment option or not.

Thus, one can see that from the initial view, without opening any menu of the Flex-
Pendant, you can already control and visualize the key parameters of your robot.

Page 20
Fig. 46 – Main menu

Fig. 47 – State view

Fig. 48 – Quick
set button

Guide

Let’s now go through the different menu from [46] :

• SafeMove Visualizer
This menu is available if your system has the safe move option. I have not used it, so we won’t
go further with this option.

• HotEdit
HotEdit enables you to offset the Robtargets of a loaded program by offsetting or reorienting
their frames, when the program is running. I have never used it, so we won’t go further with
this option.

• Inputs and Outputs
This menu is here to visualize every input and output signal defined in your system, see their
current value and their type. You can select the type of signal you want to see (in our case,
we will use only digital outputs). You can also change the current state of this signal and see
what it does on your system (for example, switch digital outputs linked to your gripper to see
what happen). [49].

• Jogging
Jogging menu enable you to visualize the current orientation of every joint or the position
and quaternion orientation of the TCP (tool center point) depending on the movement type
you are using (joint movement or linear movement). You can also change various property
related to the movements of your robot, I have detailed everything in this [dedicated part].

• Program Editor
With this menu, you can program in RAPID from scratch or load a program you want to
change. It is not really convenient, and it is more suitable to program everything on Robot-
Studio. It can still be useful to make some tiny changes, but if the RobotStudio simulation is
perfect, you won’t need it. With debug button, you can verify your program. Any error in
the program will generate a pop-up you will need to acknowledge. To navigate quickly into
your code, you can also use button such as PP to main, PP to cursor (meaning program
pointer to ...). The program pointer is the tiny purple arrow at the left of your code. You will
also see it on the production window. [50].

• Program Data
Program Data helps you to visualize, access and configure every data declared in your pro-
grams or saved by default in the robot. Again, you can edit your data from this menu, but
it is for me more convenient to do it from RobotStudio and simulate any changes. Indeed,
changing a confdata (configuration of the robot), tooldata or workobject data can drastically
change the behavior of your robot, and it could be dangerous. [51].

• Production Window
Production window is used to run the program you have loaded and edited in the program
editor. You can also directly load a program from your USB driver. Pay attention to the Pro-
gram Pointer. The program will start from the position of the Program Pointer as soon as you
press the play button. Don’t hesitate to press PP to main button as it will put the pointer to
the beginning of your main routine, which is normally the beginning of your program if you
respected the usual RAPID program structure. [52].

Page 21

Guide

• Backup and Restore
I have never used this menu, but I learned that it is an important feature on the FlexPendant.
You can save the current state of your system in backup folders (inside the ICR5 memory for
the real robot or inside your computer if you are in RobotStudio) by pressing the Backup
button. Then if you are in a bad position meaning you have set bad parameters everywhere
without understanding everything and now your system is not responding correctly, or if you
did a wrong calibration, or if you need a specific system configuration that you have backed
up, you can use the Restore system button and select the convenient configuration. [53].

• Calibration
On the real system after switching on the robot, you will need to calibrate it in this menu.
The automatic routine is necessary to calibrate every joint motor and mechanical reducer.
Meaning that before switching off the robot at the end of every session, you need to put
every joint close to 0° (perfect precision is not needed as you want to jog in the good engine
revolution) to have a correct synchronization for your next calibration. I have never used the
advanced calibration methods. [54].

• FlexPendant Explorer
This is the file explorer system of ABB. Everything is detailed on figure [55] [56]. You will
use it to load programs from your USB key to the production window.

• Control panel
From this menu, you will be able to configure the global appearance and properties of the
FlexPendant. You can also set the language and calibrate the touch screen. What is more
interesting is that you can set the 4 programmable keys, with the Progkeys option. You can
also configure the commonness of your signal (to access it more easily with the Inputs and
Outputs menu), visualize, Add and define new signals. For this, go to the Configuration
option and press Add. [57].

• System Info
From this menu you will access any details you need on this system, from the version of
RobotWare to the number of hours each joint motor has been used since comissioning.

• Event Log
Finally, the event log displays every systemmessage. Basically, every action you are doing will
be referenced here so you can understand every step you followed leading to a dysfunction,
for example. If something critical happen, you will receive a pop-up you will need to
acknowledge. After the acknowledgment, it can be seen at the event log menu. Use theView
button to filter the messages (there are a lot of them !).

In the next subpart we will detail every button of the FlexPendant, the jogging menu, the quick
set menu, and some details on calibration processes, data types and mechanical unit’s explanation.

If you need further information on other specific properties, read the ABB officialman-
uals available in the complementary resources section [5.9].

Page 22

Guide

Truc

Page 23

Fig. 49 – Inputs & Outputs

Fig. 50 – Program editor

Fig. 51 – Programmed data

Guide

Truc

Page 24

Fig. 52 – Production window

Fig. 53 – Backup and Restore

Fig. 54 – Robot Calibration

Guide

Truc

Page 25

Fig. 55 – FlexPendant explorer

Fig. 56 – FlexPendant explorer detail

Fig. 57 – Control Panel

Guide

4.3 Jogging and Calibration
There are two fundamental types of movements in robotic : linear movements and joint
movements.

• Linear movement in robotics refers to the controlled motion of the Tool Center Point (TCP)
along a straight path in the X, Y, or Z directions, based on input from the joystick in our case.
When executing linear movements, the robot’s control system coordinates multiple joints si-
multaneously to ensure the TCP follows the desired trajectory. Unlike individual joint move-
ments, linear movements require precise synchronization of several joints to maintain the
straight-line path of the TCP. This type of movement is essential for tasks that demand high
tool accuracy, such as precision assembly, machining, and detailed inspections.

This type of motion is not "natural" for example as a human you will never make a straight
line motion with your finger even if you are really focused (it will be close but not accurate).
Thus, these types of motion will generate more unnatural position for your robot and may
lead to singularities (the robot won’t be able to perform the requested movement). Any move-
ments close to singularities will generate an error pop-up you will need to acknowledge when
jogging.

• Joint movement is more natural for the robot, and singularities will be less common. With
this type of movement, each of the joints are commanded to follow a non-linear path. It is
interesting to use this type of movement when you don’t need tool accuracy (but speed) and
when you want to place the robot in a certain position (for example, home position).

Now that we know what are the two types of movement we can select to jog the robot, let’s see
what are the actions we need to do on the FlexPendant to select the type of movement and move
the robot. The left side of the FlexPendant is composed of different buttons [58].

Page 26

First we have the enable button that mimic the security of the
physical version. You need to press it to switch on the motors in
manual mode every time you want to move the robot, and even when
a program is being played. In RobotStudio it is a state button, but
physically you will need to maintain the pressure.

Next, we have the joystick that has 3 degrees of freedom (horizontal,
vertical and one rotation). Consequently, you will be able to control
joints 3 by 3 for the joint’s movement. You can do some diagonal
inputs that will command 2 of the 3 joints you are working with. The
more you push the joystick out of his balance position and the quicker
the movements are, it takes some time to be used to the joystick
control.

On the left of the joystick, there is a tiny button to mimic the physical
front interface of the ICR5 controller [59]. This ICR5 button is useful
if you want to switch from manual mode to manual 100% or automatic
mode. Be careful about automatic mode and manual 100% as the speed
limits will be different. For security reason I advise you to test your
program step by step in manual mode, then to play it still in manual
mode, and finally you can try using automatic mode. Fig. 58 – FlexPendant button side

Guide

Page 27

Still on the left, there are 4 really important buttons [59].

The first one switch the mechanical unit you are controlling. Mechanical
unit designate every mechanical system linked to your ICR5 controller. Indeed,
some ICR5 can control two robots and many external axes (like a bed that can be
rotated or a conveyor). The main mechanical unit of your ICR5 is the main robot
called ROB_1 by default. Index lab ICR5 is only linked to one robot, so this button
is not really useful in our case.

The second button is the linear motion button. If you are currently jog-
ging the robot in a joint movement, and you press this button, you will switch
to linear mode. This will change the quick set button in the bottom right corner
of your screen as well as the jog window display [60]. You will now see the
coordinates of the TCP of the tool you are using in the chosen reference frame.
You can change the reference frame with the position format button.

You can also visualize the quaternion orientation of your TCP (you can se-
lect an Euler angle visualization with the position format button). If you use the
joystick, you can now move the TCP, but not change its orientation. If you press
again the linear motion button you will enter the Reorient motion mode, and
you will be able to change the orientation of the TCP by rotating about the X, Y
or Z axis of the reference plane without moving the TCP (really important feature).

Keep in mind that we are moving and rotating about the axes of the refer-
ence plane, thus, shifting from the world default frame to the tool frame can
change everything [61] [62]! Fig. 59 – Button detailed

Fig. 60 – Linear mode jogging window

Fig. 61 – World frame

Fig. 62 – Tool Frame

Guide

The third button is the joint movement button. When this button is pressed, the jog window
will change [63] and you will be able to visualize in degrees the orientation of each joints about
their pivot axes. The quick set button in the bottom right corner will change to [64] and you will be
able to command joints 1, 2 and 3 with the joystick. Another press on the button will switch to the
control of joint 4, 5, 6 and will be indicated again on the quick set button display [65]. Here is the
detail of the 6 joints for a common 6 axes ABB robot [66]. If the diagonal movement is annoying you
or if you want to control only one joint, you can lock the joystick in 1 or 2 directions by selecting
the joystick lock property on the jogging window.

Finally, the last button is used to enable incremental movement. Consequently, movement
won’t be continuous but incremental to anticipate more easily the movement you are commanding
and to have one more security layer. You can set the increment property by clicking the increment
property in the joggingwindow [67]. Additionally, the robot will be way slower andmore accurate.

The second set of button from [59] is used to run a program on the production window, step
by step or continuously. You can stop at any moment with the square button. It is better to stop
with the square button than releasing the security, as a security stop is stressful for the
motors/reductors.

The last set of buttons are the programmable keys you can set up from the control panel
window as explained earlier.

Page 28

Fig. 63 – Joint jogging window

Fig. 64 – Quick
set display 1

Fig. 65 – Quick
set display 2

Fig. 66 – General 6 axes ABB robot

Fig. 67 – Increment settings

Guide

Page 29

Now let’s focus ourselves to the Quick set menu I mentioned in earlier subparts
[68]. From it, you can choose the mechanical units you are controlling (first option),
select the increment type we want as mentioned earlier (option 2), chose the run mode
meaning if you want to repeat the program in cycle or run it only once (option 3),
setting up a step increment in your program (one line of code, one code block ...) (option
4), modifying the percentage of speed relative to the programmed speeds (you can only
decrease the speed in manual mode, if you want to increase it you need to select manual
100% or automatic mode) (option 5), and finally select the operating mode (option 6).

One can observe that with only the quick set menu and the FlexPendant’s
buttons, you can already completely jog your robot, without opening any
window.

Before ending this part, let’s speak about crucial data types in ABB architecture and
calibration processes. A tool data type is used to code a tool in RAPID program [69]
and includes :

• A name

• A first boolean that indicated if the robot holds the tool or not at the robot flange

• The coordinates and quaternion orientation of the TCP (tool center point) as a
pose data.

• The coordinates of the center of mass, the inertia of the tool and his mass as a load
data.

After setting up your tool in RobotStudio (see the tutorial section [5.1]), you can
calibrate the TCP. You can indeed change the TCP frame coordinates by using a
calibration method proposed by ABB that will change the TCP frame coded in the
simulated environment RobotStudio to perfectly match the real world.

For this, you need to use a calibration stake that you are going to place some-
where in the robot accessible area. You will then approach your tool to the end of the
stake that will be your center point [70] (if it’s a gripper for example you want the end
point of the stake between the two claws, if it is a torch you want it at the tip of the
torch). Then in the jogging menu, select the properties of your tool, select your
tool, press edit and define. A window like [71] will pop up.

After select the TCP (default orient.) method, select the first point and press
modify position when the end of the stake is where you want your TCP to be. Then
orient the tool by using the reorient movement option (by pressing twice on linear
mode button) and change the tool orientation. Finally select the second point and press
modify position. Do the same thing for point 3 and 4.

With these four different orientations, the software will determine the
TCP position with a precision below the millimeter.

Fig. 68 – Quick
set options

Fig. 69 – Tooldata

Fig. 70 – TCP calibration

Guide

A wobjdata (work object data) is a frame related to a specific point in your work environment,
for example, the corner of a table, the corner of a piece you want to pick and place ... If you want
some targets of your program to be relative to these object (we will discuss this in the last part of
this guide), you need to create and calibrate wobjdata (the default one being the base frame of your
robot).

A wobjdata [72] is coded by :

• Two boolean : if the robot holds the work object or not and if the user frame is fixed or not.

• A user frame, which is the frame used to locate the object frame coded by a pose data

• An object frame, which is the work object frame (corner of a table for example) coded by a
pose data

You can calibrate your work object data by selecting the work object properties in the jog-
ging menu, then selecting the desired work object, pressing edit, define and selecting the 3 points
method only for the object (for the user plane I have always kept the default which is the base frame)
in the window that will pop up [73].

The first point (X1) is the origin point of the frame, the second point is another point on the X
axis (these two point define the X axis), the last point belongs to the Y axis that will be perpendic-
ular to X axis cut the Y axis at point X1. You can use stakes and a specific calibration tool (like a
stake mounted on the flange) to bring the TCP to the good position and pressmodify position for
each point.

Of course, you need to calibrate your TCP before calibrating works object.

Page 30

Fig. 71 – Tool calibration window

Fig. 72 – Wobjdata

Fig. 73 – Work object calibration

Fig. 74 – Work object explanation

Guide

Finally, let’s talk about ABB Robot axis configuration. When you define a target, for the
majority of them, your robot will have more than one joint orientation sequence to reach it
[75]. These joint orientation sequences are called axis configuration. The default configuration
of a robot is [0000] coded in rotation quadrants of axis 1, 4 and 6 plus an extra virtual axis used for
specifying the wrist center in relation to other axes.

ABB manual definition of quadrants : The quadrants are numbered from zero for positive
(counterclockwise) rotation and from -1 for negative (clockwise) rotation.
For a linear axis, the integer specifies the range (in meters) from the neutral position in which the axis
is located.

Sometimes, some tricky targets are not reachable with the default robot configuration (or the
configuration you registered for this specific target) and this will result in a singularity and the
stopping of your program if you don’t disable the configuration control algorithm of the ABB
controller. Thus, you can turn off configuration control to enable the controller to calculate and
change the robot axis configuration depending on the target (this may generate some unwanted
result if you are working in a closed environment but will enhance the target reachability of your
robot).

As explained before, MoveL (linear movement) movements are often generating singularities
compared to MoveJ (joint movement) movements. Thus, ABB, gives you the opportunity to disable
the configuration control algorithm for linear movements or joints movement with the following
instructions : ConfL Off and ConfJ Off to separate both movements types. That’s why my main
procedure in [50] is beginning with ConfL Off.

Page 31

Fig. 75 – ABB RobotStudio Manual example for different configuration possibilities

Guide

5 Pick and Place tutorial

5.1 GrassHopper start
You can download the starter GrassHopper simulation frommyGitHub Page, in the comple-

mentary resources section [5.9] or follow this tutorial with your own. There are two simulations
on my GitHub, the first one is a simulation made with the Robot plugin where I have not found a
way to create a work object plane (thus every target is relative to the base of the robot and not to
other specific frames) and the other one is made with the Robot component pluginwhere I have used
some component to create work objects.

Thus, the second simulation is more advanced and will work if we change the configuration
of the robotic environment. For example, is we move the table or the blocks we want to pick and
place, we will only need to recalibrate our Robot and the program will work because targets posi-
tion are relative to the work object plane and not the world plane. With the first simulation, you
will need to place the blocks and table exactly at the same position (you are calibrating the
robotic environment, but not the robot in itself).

Both simulations are the same : the IndexLab ABB robot (ABB IRB 45-205) picks and places
8 blocks on a table with MoveL and MoveJ movements using a pneumatic gripper tool from In-
dexLab. The robot is programmed to change its speed before gripping and releasing blocks, signals
are changed to activate and deactivate air valves to open and close the gripper and some pauses are
introduced to give the robot some times to grip and release blocks (the operation is not instanta-
neous) [77]. They are also using the same simplified version of the gripper tool that we will
integrate in RobotStudio [76].

Grasshopper simulation algorithms are subdivided in different algorithm for :

• Tool center point parametrization and tool integration

• Home target definition

• Bricks and table planes creation

• Targets creation and scheduling

• Program generation and simulation

• Collision checking (only for the first simulation)

• Double tools (gripper closed and unclosed) only for the first simulation

• Work object data creation (only for second simulation)

Page 32

Fig. 76 – Simplified gripper model

Guide

truc

The output of these GrassHopper simulation is a raw RAPID programm [78].

I advise you to read the RobotStudio environment section [3.2], especially themodeling
panel explanation, before starting this tutorial as we will model our robotic environment
with RobotStudio features.

Page 33

Robot plugin simulation Robot Component Plugin

Fig. 77 – GrassHopper robot component plugin simulation

Fig. 78 – Raw output code

Guide

5.2 Robotic cell creation
In a first place, let’s model the foundation, bricks and the table of the GrassHopper

simulation in RobotStudio with the modeling window.

Follow the RobotStudio setup section [2.1] to download and install the suitable RobotWare ver-
sion, and create a pick and place project with the correct Robot (in our case it is an ABB IRB 4600-
45-205). You should have this graphic window : [79].

Let’s create a cubic block to model the foundation below the IndexLab ABB robot. For that, we
use the modeling window Create panel, Solid button and select the box feature. Height dimen-
sion should be 500 mm and the block should be centered in the Robotic cell so (0X, 0Y) coordinate
in the world reference coordinate system [80].

Then, we want to move our Robot to put it on top of this foundation. For this, select your Robot in
the layout side bare, right-click, place and select set one point. The first point should be (0, 0, 0)
and the second one (0, 0, 500) [81]. A first pop-up should appear to ask for task frame update, select
yes. A second one will ask you to restart the controller, select yes [82].

Page 34

Fig. 79 – Initial graphic window

Fig. 80 – Foundation creation

Fig. 81 – Robot placement

Fig. 82 – Warning pop-up

Guide

Now let’s create the table. If you are using the robot plugin simulation, the table needs to
be exactly at the same distance from the robot than in GrassHopper. For the other plugin,
we just need it to be reachable by the robotic arm, because we will create a reference frame for the
table. As for the foundation, we use the create box option, and we move it with the set one point
option. Table center XY coordinates should be (0, 1300), and its dimension are (600, 1000, 720) mm
[83].

Finally, we need to create the 8 blocks. As for the table, the first block should be at the same
position as the GrassHopper simulation if you are using the robot plugin one. For the robot com-
ponent plugin, this has no importance. Blocks dimensions are (45, 90, 80) mm. There is a 90 mm X
axis offset between their center and a 125 mm Y axis offset between the two rows. The first block
XY coordinates are (150, -700) mm. We use the same features as for the table : [84].

Right-click on the brick and rename it, use the modify, change local coordinate option and
set the local coordinate to the center of the upper face of the block [85] (use the snap object fea-
ture). Then we can use the duplicate feature and duplicate the first block three times with a -90 mm
X offset from the center of its upper face. Duplicate once with a -125 mm Y axis offset, and duplicate
the first block of the second row with -90 mm offset [86].

Page 35

Fig. 83 – Table creation

Fig. 84 – First block creation

Fig. 85 – First block local coordinate
Fig. 86 – Duplication of block 1

Fig. 87 – Duplication pre-visualization

Guide

You should now have a graphic window like these : [88]. You can then rename everything as
you want, set the appearance of your blocks to create a nice visual.

5.3 Tool integration
There are two ways to integrate tools in RobotStudio. The first one is to create the tool with the
create tool option and the second one is to create a tool mechanism [89]. The one for the rest
of the tutorial will be the tool created with the create mechanism option.

5.3.1 Create tool

Let’s create a conic tool (fictive and really simple tool) to understand how to create a tool in Robot-
Studio.

The first step is to create the geometry of the tool in the modeling panel and to put it in the
right position (attached to the flange of the robot). In the modeling panel, right-click on your robot
in the layout sidebar and select the jog-joint option [90]. We want our robot to be in a neutral
position, so jog the fifth axis to 0° [91]. Use the create solid option and select the cone shape.
Then, with the snap object option, select the origin of the flange as the center of our cone base.
Create a cone with a diameter of 125 mm and a height of 200 mm and a 90° orientation
on the Y axis (world frame reference) [93]. Finally, attach the cone geometry to the six axis
without updating the position (otherwise your tool won’t follow the movement of the robot).
Rename your component to ConeTool. You should obtain the following model : [92].

Page 36

Fig. 88 – Robotic cell elements

Fig. 89

Fig. 90 – Jog joint feature

Fig. 91 – Neutral postion

Fig. 92 – Cone created

Fig. 93 – Cone creation

Guide

Now, let’s use the create tool option. Name it ConeTool, select the existing geometry option
and chose your ConeTool. For a better precisionwhen youwill transfer your RobotStudio simulation
to the real Robot, you can put the right mass, center of gravity and inertia of your tool [94]. Next,
we need to declare the TCP of this tool. This TCP declaration use the former tool data reference
frame coordinate system (the flange tool data). Use the snap object option and select the end of the
cone for the TCP position. The orientation of the TCP is the same as the flange frame, so no rotation
is needed [95]. When the creation if finished, yourmechanism should appear in the layout and
the new TCP frame should appear in the graphic window [96].

Finally, wewant to test our new tool in the simulation panel. For this, go to the path&target
sidebar and create a new tool datawith ConeTool name. Use snap object to modify the TCP posi-
tion and don’t change the orientation [99]. In the sync properties, select the PERS storage type
and the user module. Indeed, we want to declare our tool in the user module, which is a system
module (variable declared inside this module can be used without other declaration in any other
module).

Now, go to the RAPID window, double-click the user module and declare your tool with the
following line : [97] (I have explained the tool declaration in the manual mode section [4.1]).

Finally,write down the following test program in theModule1. We are using the default wobj0
work frame data, which is the world frame [100]. The default data are declared in the base module,
which is also a system module [98].

Page 37

Fig. 94 – ConeTool creation Fig. 95 – ConeTool creation step 2

Fig. 96 – ConeTool created

Fig. 97 – Cone tool declaration

Fig. 98 – Base system module
Fig. 99 – Tool data declaration

Fig. 100 – Simple module 1 program

Guide

Verify your program in the RAPID window and apply the modification (apply button). A
green bar should appear on the left side of your RAPID program. Go to the simulation panel and
activate the TCP trace feature (change the default trace color) [101]. You can finally launch the
simulation with the start button ! You should obtain the following result : [102].

5.3.2 Create mechanism tool

In this subpart, we are going to integrate a gripper tool designed from Rhino. The gripper
is made of 3 pieces: the tool mount and the two claws of the gripper. We only use two .sat files as
the claws are exactly the same. Of course, the .sat files are available on my GitHub page.

From the modeling panel, use the import geometry feature to import the .sat geometry files
(if you did the ConeTool tutorial, you can make it disappear as well as the ConeTool TCP
frame, we won’t use them anymore). The pieces will be imported at the origin of the graphic
window, inside the foundation [103]. Change their position with the set position option to be
able to see them, and to select them with the snap object option.

Next, we want to place the tool mount on the flange with the set one point feature (chose
the center of the tool mount flange lower surface as the primary point -from and the origin of the
flange frame as the primary point -to) [104]. You will then need to rotate the tool mount with
a 90° rotation about the Y world reference frame axis (don’t forget to choose the correct rotation
origin with the snap object option) [105].

Page 38

Fig. 101 – TCP trace activation

Fig. 102 – TCP trace activation

Fig. 103 – Tool mount imported

Fig. 104 – Tool mount place process

Fig. 105 – Tool mount rotation

Guide

For the first gripper claw, we will use the same features and select the following points : [107].
A 90° rotation is also needed about the Y axis (choose the correct rotation origin). You will have
this result : [109].

Finally, we need to duplicate the first gripper claw with a Z offset of 150 mm [110] and to
rotate it with a 180° rotation about the X world reference frame axis (again, watch out for the cor-
rect rotation origin). Attach the toolmount component to the flange (don’t update the position)
and attach the two claws to the toolmount component (again, don’t update). Youwill now have
the final geometry of the gripper tool [112]! Feel free to modify the appearance of the gripper as
you wish.

We can now create the gripper tool mechanism the with the create mechanism feature of
the modeling panel. Name it GripperTool and select the tool mechanism type [113].You will then
need to follow the following steps (double-click on them to enter the parameters):

• Links : The gripper tool has 3 links : one base link made of the tool mount (L1) and two
links between the claws and the tool mount (L2 and L3) [114].

• Joints : The gripper tool has two prismatic joints between the claws and the tool mount
responsible for the gripping action. You need to parametrize them as such : [115], meaning
that the first claw can move from 15mm about the Z axis (world reference frame) and that
the joint is a prismatic joint between the tool mount and the first claw. The second joint is
a symmetry of the first one (-15mm about the Z axis) [116]. Don’t forget to jog the joints to
verify if your parametrization is correct.

Page 39

Fig. 106 – Tool mount placed

Fig. 107 – First claw place process

Fig. 108 – Claw rotation

Fig. 109 – First claw placed

Fig. 110 – Claw duplication
Fig. 111 – Second claw rotation Fig. 112 – Final gripper tool geometry

Guide

• Tooldata : Here, you need to specify the TCP of the tool as well as the mass and inertia
(for a better precision on the real system). Tooldata should belong to the base link, the TCP
must be placed slightly below the middle of the segment crossing the middle of both gripper
claws [117] (use the snap object and then modify the coordinate as you need). The mass of the
real tool is 5.6 kg, the center of mass position and the inertia of the tool are unknown [118].

Page 40

Fig. 113 – Mechanism creation

Fig. 114 – Links creation

Fig. 115 – J1 Fig. 116 – J2

Fig. 117 – TCP placement

Fig. 118 – Tooldata declaration

Guide

Now we can compile the mechanism every mechanism step is ticked [119], your gripper tool
should then appear in the layout. We can then add a gripper position relative to the position
of the two prismatic joint. Two position are needed : an unclosed gripper position [120] and a
closed gripper position [121] (if the display of the gripper is buggy, it’s normal).

We can set the transition time between these two position [122]. You can now test the joints
of your gripper tool by right-clicking on it in the layout and select the jog joint feature [123].

Finally, we can create the tool data in the simulation window, path&target sidebar [??].
As for the ConeTool, use the snap object and snap frame parameter to choose the correct TCP
position (relative to the flange reference frame, so no rotation is needed). Update the name, the mass,
the center of gravity and select the user module for data synchronization. You also need to declare
the Gripper tool in the user module as for the Cone tool but set the center of gravity to (0,
0, 300).

Page 41

Fig. 119 – Mechanism compiled

Fig. 120 – Unclosed Gripper Fig. 121 – Closed Gripper

Fig. 122 – Set transition time

Fig. 123 – Jog gripper joints

Fig. 124 – Tool data creation

Fig. 125 – Gripper tool integrated

Guide

5.4 Work object planes
This part is not mandatory if you work with the Robot plugin simulation, as I haven’t
found a way to create a work object reference frame with this plugin.

For the other simulation, I have used the work object reference frame : one is used for the targets
relative to the brickswe want to pick and place, and the other one is used for the targets relative
to the table. Thus, we are going to create two work object plane data inside RobotStudio. I
have explained what is a work object reference plane at the end of the manual mode section.

First, we need to create two frames that will help use creating the two work object data. Use
the create frame button of the modeling window and use the snap object button to place the origin
in the center of the first brick upper surface [126]. Then create another frame by selecting the
bottom left corner of the table as the origin of the table frame and offsetting by 100 mm the X
and Y coordinates [127]. Rename both frames, to make your simulation understandable.

Next, go to the simulation window and create new work object data in the path&target
sidebar [128]. Work object data is using a user reference frame and an object reference frame.
We only need to modify the object reference frame origin coordinate by selecting the origin of the
frames we previously created with the snap frame feature [129] [130]. Modify the sync prop-
erties to PERS data storage and user module name [131]. You need to do the same operation for
the brick work object data and the table work object data. After this declaration, work object frame
should appear bigger than normal frames [132].

Page 42

Fig. 126 – Brick object frame creation Fig. 127 – Brick object frame creation

Fig. 128 – Work object in Path&Target

Fig. 129 – User frame not edited

Fig. 130 – Table object frame declaration

Fig. 131 – Sync properties

Fig. 132 – Brick work object declared

Guide

Finally, we need to declare these data in the user module. For that, go to the RAPID window,
double-click the user module in the sidebar and write the following lines [133]. It is just the coding
translation of the previous steps. I have explained this declaration in the manual mode section.

5.5 Rapid code formal edition
Now that we have every component, mechanism and reference frame we need, we can start

the editing of our GrassHopper raw code. The aim of this subsection is to transform our raw
code into a structured RAPID program, easily understandable and readable for someone that
hasn’t created the GrassHopper simulation.
For this, wewill create a Pick_Place procedure and amain procedure into a Pick_Placemodule.

First go to theRAPIDwindow and create a newmodule for the T_ROB1 task (meaning task of
Rob1 robot, Rob1 being the name of the main robot of the ICR5 controller you are using) [??]. Then
copy and past the raw code of your GrassHopper simulation in the Pick_Place_Module RAPID.

If you have tested the GrassHopper simulation, you know that the robot repeats 8 times the
same sequence of actions that uses two targets for the bricks (one above the upper surface of the
brick and one on the surface), two targets for the table (one slightly above the table and one above
the table at the block height) and the home position. This sequence will be our Pick_Place procedure.
GrassHopper gives you instructions for each sequence. We will compress this raw code in only
two procedure (main and Pick_Place procedures) !

For both simulation, you should do the following step :

• Delete the two lines of the Home_T_ROB1 module and the tool declaration.

• Edit the extj and conf declaration, data type should be CONST.

• Rename Speed000 to "Fast_speed" and Speed001 to "Approach_Speed"

Page 43

Fig. 133 – Work objects data RAPID declaration

Fig. 134 – Create new module

Guide

• Declare jointtargets and robtargets for eachmovement instruction, give suitable names
to your targets, and use commentary to make the declaration easily understandable. A joint-
target declaration needs a robjoint data that gather the orientation of each joint in a list and
an extjoint data for the orientation of each external joint you are using (if no external joint is
needed, the extjoint data value is [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]) [135]. A robtarget declara-
tion needs a pos data (X, Y, Z) an orientation data (q1, q2, q3, q4) a configuration data (robotic
configuration is explained in the manual mode section [4.1]) and an extjoint data [136].

In our case, we need to declare targets for the home position, the upper targets and
lower targets plane of each brick and table position. Remind that movement instruction
such as MoveL and MoveJ needs robtargets in their declaration. Thus, you need to copy and
past the beginning of MoveL/MoveJ declaration [137].

If you are using the Robot plugin simulation, copy and past every instruction. If you
are using the Robot component plugin simulation, we know that the bricks targets position
are relative to the brick work object data frame and that bricks are offsetted by 90 mm about
the X axis and 125 mm about the Y axis. For table targets, copy and past the beginning of the
movement declaration.

You should have the following targets declaration at the end, for the Robot plugin : [143],
for the Robot component plugin : [144].

• Next, we need to create the Pick_Place procedure. A procedure is close to a function in other
languages. Indeed, a procedure takes argument and can be called in other part of our RAPID
program (in the main procedure, for example).

A pick place sequence is composed of the following actions :

– Fast MoveJ to the brick upper plane
– Slow MoveL to the brick lower plane and grip
– Slow MoveL to the brick upper plane
– Fast MoveAbsJ to home position
– Fast MoveJ to the table upper plane
– Slow MoveL to the table lower plane and release of the brick
– Slow MoveL to the table upper plane

Page 44

Fig. 135 – Jointtarget

Fig. 136 – Robtarget

Fig. 137 – Target inside move instruction

Guide

– Fast MoveAbsJ to home

Thus, our procedure will take only four arguments : the two bricks plane and the two table
plane [138]. The core of the procedure is the direct translation of the above list. To trigger
the gripping and release actions of the gripper, we are updating boolean signals linked
to valves inside the pneumatic gripper circuit. OUT1 signal will close the gripper when
equal to 1, OUT2 signal will open it when equal to 1. Signal must not be equal to one at
the same time. That’s why we are turning them to 0 just after being to 1.

You should have this Pick_Place procedure if you are using the Robot plugin : [139] note
the default frame utilization in every instruction, meaning that every movement and target is
relative to the default frame (world reference frame).

If you are using the Robot component simulation, we need to put the right reference
frame in our instructions. Movements to upper and lower bricks targets need to be relative
to the brick reference frame. Movements to upper and lower table targets need to be relative
to the table reference. Movement to home position need to be relative to the world reference
frame. You will then have this procedure [140].

Page 45

Fig. 138 – Pick_Place procedure declaration

Fig. 139 – Pick_Place procedure robot plugin

Fig. 140 – Pick_Place procedure robot component plugin

Guide

• We can now delete every line of code in the raw main procedure except the ConfL
instruction (explanation in the manual mode section) and call eight time our Pick_Place
procedure with different targets argument. Add at the beginning of the main procedure
a MoveAbsJ to home instruction to ensure the start position of the robot. The main procedure
should look like this [141]. The variable declaration part of your RAPID program should be
like this [142].

You have now a structured, functional and readable program !

Page 46

Fig. 141 – Main procedure

Fig. 142 – Variable declaration part

Guide

Page 47

Fig. 143 – Robot plugin targets declaration

Guide

Page 48

Fig. 144 – Robot component plugin targets declaration

Guide

5.6 Signals creation
If you apply the changes in the RAPID window, you will normally receive an error in the output

of your code becausewe haven’t yet created the two signals OUT1 and OUT2 that are gener-
ating the gripping and releasing actions of our gripper tool.

To create new signals, we need to go to the controller window, click the configuration but-
ton and select I/O system. In the type column of the window that has just popped up, select
signal [145]. You should have the following table [146] that gather every signal currently installed
in the simulated ICR5 armory controller.

To create a new signal, right-click on the table and select new signal. With our basic signal
usage, we only need to enter the name, the type and the access level of our new signal. The
following parameters should be chosen for the OUT1 signal [147]. When you click ok, your signal is
created and installed in the ICR5. To fulfill the installation, you need to restart your ICR5 controller,
but we won’t do it until we have created every signal we need (so just click ok on the warning from
the instance editor [148]). OUT1 should now appear in the table [149]. Right-click on the OUT1
row, select copy signal and change the name to "out2". This will create the second gripper
signal.

For our simulation, we also want the block to move and stay still when picked and placed. For
this, we will create eight other signals (b1 to b8 boolean) that will work as a gripped state
flags in our program. As for out1 and 2, b signals are digital output with an "all" access level. As
for out1, right-click on the table and create the signal b1. You can then copy and change the name of
b1 signal 8 times. You should have these following rows [150]when you have finished the b signals
creation.

Page 49

Fig. 145 – Type col-
umn

Fig. 146 – Beginning of signal table

Fig. 147 – out1 creation

Fig. 148 – Instance editor warning

Fig. 149 – out 1 created

Fig. 150 – b signals created

Guide

You can finally restart your controller (restart button) to finalize the installation of the sig-
nals. We now need to associate actions to each of the created signal.

5.7 Simulation
To associate signals with actions, we need to go to the simulation window and click the little

arrow next to configure button panel [151]. This will launch the event manager.

From the event manager window, we need to add event [152] (one for each signal). When you
create an event, you need to enter :

• The type of trigger, in our case it will always be a I/O signal changed type of trigger [153].

• The signal from the I/O signal table list and the trigger condition (value of the signal)
[154].

• The action type. For out1 and out2, we will change the gripper tool mechanism to spe-
cific joint positions (closed and unclosed gripper) [156]. For b signals, we will attach and
detach the object to the gripper tool mechanism [157]. Attention, you need to select
the keep position option Attention, we will create two events for each b signal : the first
one will attach the block, to the gripper tool when the value is 1, the other one will detach the
block when the value is 0 [155].

Page 50

Fig. 151 – Launch event manager

Fig. 152 – Add events

Fig. 153 – Add events

Fig. 154 – Trigger type

Fig. 155 – Change trigger value

Guide

When you have created the two types of signal for b1, copy them eight times with the copy
button, select the new signals one by one and modify them with the action and trigger menu below,
it will be faster. When every event is created, you should have the following event : [158].

Page 51

Fig. 156 – Out 1 and 2 events

Fig. 157 – b signals event

Fig. 158 – Every event we need

Guide

To make b signals picked flags work, we need to implement some simple instructions in our
RAPID program, in the Pick_Place procedure. We will use a variable named brickCounter in
our procedure, to know which signal to use depending on the brick number.

Thus, we need to declare 8 variables (brickCounter1 to brickCounter8) in the variable
declaration part of our program that will be put in argument to our Pick_Place procedure (here
is the new Pick_Place procedure declaration [160] and a call example [161]). These variable are
constant, and their data type is num [159] (brickCounter1 equal 1, brickCounter2 equal 2 ...).

Then, with a condition structure close to the switch case structure in C language, we en-
sure that the good signal is updated with the suitable value in the procedure [162] at the right
moment (after the wait times for the gripping and releasing action).

Everything is now finalized, you can try to start your simulation and enjoy the final
result. Don’t forget to reset the simulation at the end of it. Change the speed declaration to
make the robot move faster (GrassHopper simulation are really slow).

Page 52

Fig. 159 – BrickCounter declaration

Fig. 160 – New Pick_Place procedure declaration

Fig. 161 – New Pick_Place procedure call

Fig. 162 – Test case RAPID structure (gripping and releasing)

Guide

5.8 Help for debug
If you face some problems, here is a quick list of problem and solution that might help

you :

• Code error : Argument WObj specifies a mechanical unit name, which is not activated or is
unknown in the system. You need to put the boolean wobjdata.ufprog to TRUE in work object
data declaration.

• Code error : The currently defined TCP load for robot ROB_1 exceeds the maximum allowed
load for the robot model. Change the center of mass coordinates in the tool declaration (reduce
them slightly).

• Robot is doing every action but offsetted about Z axis. Place the robot at (0,0,0) in the
modeling panel and update task frame. Restart the controller, place it back to (0, 0, 500), update
the task frame reference and restart as second time the controller.

• Blocks are not gripped correctly (not inside the gripper), or teleportedwhen gripping.
Verify your events in the simulation event manager. Verify the order of your blocks (blocks 1
3 5 7 first row, blocks 2 4 6 8 second row).

• If you had an error during your simulation, and you decided to reset it before the end of the
program, some signals values might be set to 1 and thus generating errors. You must
set them back manually by using clicking on Inputs/Outputs button of the controller window.

• Pay attention to your program pointer when you launch a simulation. It must be at the
beginning of your main procedure. Set the program pointer to the main procedure in all tasks,
if not.

Page 53

Fig. 163 – Pick&Place done

Guide

Conclusion
I hope this guide has been helpful to you. You should now be able to transfer your GrassHopper

robotic simulations into RobotStudio, from tool integration to event creation, jog the real robot in
manual mode, and have a basic understanding of RAPID code programming, calibration, and robotic
arm systems. This guide only scratches the surface of what you can achieve with the combination
of RobotStudio and GrassHopper. I encourage you to expand your knowledge with the official ABB
manual, create more ambitious simulations beyond this pick-and-place tutorial, and continue ad-
vancing in your robotics journey.

Feel free to share your feedback with me (contact information can be found on my website
thibault-courtois.com). If you’ve discovered other interesting features in RobotStudio or additional
synergies between RobotStudio and GrassHopper, I encourage you to contribute by adding com-
plementary sections and tutorials to this guide. I learned a lot while creating this guide during my
IndexLab internship, and I like to think I’m now an advanced ABB robot user (though perhaps not
entirely). I’m proud of this work, and thank you for the attention you put in my work.

Finally, I would like to express my gratitude to the wonderful IndexLab team, with whom I had
the pleasure of working while creating this guide. The team comprises passionate architects, re-
searchers, and engineers dedicated to innovative robotic manufacturing applications. I would also
like to thank Mr. Ruttico, head of IndexLab, for allowing me to use the IndexLab ABB robot and for
providing me with a RobotStudio license, which was essential for completing this guide.

Page 54

Guide

Complementary resources

5.9 ABB official manual
Here are some links for official ABB manuals concerning RAPID coding and RobotStudio :

Operating manual : Getting started, IRC5 and RobotStudio

Operating manual : RobotStudio

Operating manual IRC5 with FlexPendant

Operating manual : Introduction to RAPID

Technical reference manual : Rapid overview

Technical reference manual : RAPID Instructions, Functions and Data types

5.10 GitHub link
Here is the link for my GitHub page related to this guide :

GitHub

Page 55

http://www.gregbotos.com/publicfiles/ABB/3HAC027097_Get_Started_ABB.pdf
https://us.v-cdn.net/5020483/uploads/editor/l2/ebhwvngecl5m.pdf
https://us.v-cdn.net/5020483/uploads/editor/x7/0kqcav7a5yfx.pdf
http://rovart.cimr.pub.ro/docs/OpIntroRAPID.pdf
http://rovart.cimr.pub.ro/docs/TRMRAPIDov.pdf
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
https://github.com/ThibaultCourtois/Internship-2023-2024/tree/main/TUTORIAL

	Introduction
	Why using both GrassHopper and RobotStudio ?
	GrassHopper robot plugins
	RobotStudio

	RobotStudio setup
	Generalities
	Installation and setup
	Download and Licensing
	Installing the suitable RobotWare

	Robot Studio Environment
	Main panels general descriptions
	Modeling Window
	Controller and simulation window
	RAPID structure

	Manual Mode with RobotStudio
	Launching manual mode
	FlexPendant basics
	Jogging and Calibration

	Pick and Place tutorial
	GrassHopper start
	Robotic cell creation
	Tool integration
	Create tool
	Create mechanism tool

	Work object planes
	Rapid code formal edition
	Signals creation
	Simulation
	Help for debug

	Conclusion
	Complementary resources
	ABB official manual
	GitHub link

